

Mark Scheme (Results)

June 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA042723 All the material in this publication is copyright © Pearson Education Ltd 2015 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCELIAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WMST02/01 Statistics 2 Mark Scheme

Question Number	Scheme		Marks
1. (a)	${P(X > 4) =} 1 - F(4)$	1 - F(4) seen or used	M1
	$\left\{=1-\frac{3}{5}\right\} = \frac{2}{5}$	$\frac{2}{5}$ or 0.4	A1
	P(2 < V < z) = 0.642		[2]
(b)	F(3 < x < a) = 0.042 F(a) - F(3) = 0.642	F(a) - F(3) = 0.642	M1 o e
	$F(a) - \frac{1}{20}(3^2 - 4) = 0.642 \ \left\{ \Rightarrow F(a) = 0.892 \right\}$	Correct equation	A1 o.e.
	$\frac{1}{5}(2a-5) - \frac{1}{20}(3^2-4) = 0.642 \implies a = \dots $ lea	Solving this equation o.e., adding to $a = \dots$ (or $x = \dots$). Follow through their F(3)	dM1
	$\left\{\frac{1}{5}(2a-5) = 0.892 \implies\right\} a = 4.73$	a = 4.73 (or $x = 4.73$)	A1 cao
(1-)			[4]
(b)	Alternative Method for Part (b) $f^4(1)$	· · · · · · · · · · · · · · · · · · ·	
	$\int_{3} \left(\frac{1}{10} x \right) \{ dx \}$ Correct probabilities	ty between $x = 3$ and $x = 4$	M1
	$\left\{ = \left[\frac{x^2}{20} \right]_3^4 \right\} = \frac{4^2}{20} - \frac{3^2}{20} \left\{ = \frac{7}{20} \right\}$	Correct $\frac{4^2}{20} - \frac{3^2}{20}$, simplified or un-simplified.	A1
	$\int_{3}^{4} \left(\frac{1}{10}x\right) \left\{ dx \right\} + \int_{4}^{a} \left(\frac{2}{5}\right) \left\{ dx \right\} = 0.642 \Longrightarrow a = \dots$	Vrites a correct equation and attempts to solve leading to $a = \dots$ (or $x = \dots$)	dM1
	$\left\{\frac{7}{20} + \frac{2}{5}a - \frac{8}{5} = 0.642 \implies \right\}a = 4.73$	a = 4.73 (or $x = 4.73$)	A1 cao
			[4]
(c)	$d\left(1,\frac{2}{2},4\right)$ 1 Attempt a	t differentiation. See notes.	M1
	$I(x) = \frac{1}{dx} \left(\frac{1}{20} (x - 4) \right) = \frac{1}{10} x$	At least one of $\frac{1}{10}x$ or $\frac{2}{5}$	A1
	$f(x) = \frac{d}{dx} \left(\frac{1}{5} (2x-5) \right) = \frac{2}{5}$	Both $\frac{1}{10}x$ and $\frac{2}{5}$	A1
	$f(x) = \begin{cases} \frac{1}{10}x, & 2 \le x \le 4\\ \frac{2}{5}, & 4 < x \le 5\\ 0, & \text{otherwise} \end{cases}$ This All three follows	mark is dependent on M1 ee lines with limits correctly ed through from their $F'(x)$	dB1ft
			[4]
1			10

	Question 1 Notes			
1. (a)	M1	1 - F(4) seen or used.		
	Note	Can be implied by either $1 - \frac{3}{5}$ or $1 - \frac{1}{5}(2(4) - 5)$ or $1 - \frac{1}{20}(4^2 - 4)$		
		The probability statements $1 - P(X \le 4)$ or $1 - P(X < 4)$ are not sufficient for M1		
	A1	$\frac{2}{5}$ or 0.4		
	Note	Give M1A1 for the correct answer from no working.		
(b)	NOTE	In part (b), candidates are allowed to write		
		• $F(a)$ as either $P(X \le a)$ or $P(X \le a)$. Also condone $F(a)$ written as $F(x)$		
		• $F(3)$ as either $P(X < 3)$ or $P(X \leq 3)$		
	<u>M1</u>	For writing $F(a) - F(3) = 0.642$ or equivalent (see NOTE above)		
	A1	For an un-simplified $F(a) - \frac{1}{20}(3^2 - 4) = 0.642$ or equivalent (see NOTE above)		
	Note	Give 1 st M1 1 st A1 for $F(a) = 0.892$ or $P(X \ge a) = 0.108$		
	SC	Allow SC 1 st M1 1 st A1 for $\frac{1}{20}(a^2-4) - \frac{1}{20}(3^2-4) = 0.642$		
	Note	Give 1^{st} M0 for $F(a-1) - F(3) = 0.642$ o.e. without a correct acceptable statement		
	dM1	dependent on the FIRST method mark being awarded.		
	Note	Attempts to solve $\frac{1}{5}(2a-5) - \text{"their F}(3)\text{"} = 0.642$ leading to $a = \dots$ (or $x = \dots$) dM1 can be given for either $\frac{1}{5}(2a-5) = 0.892$ or $1 - \frac{1}{5}(2a-5) = 0.108$ leading to		
	A 1	$a = \dots$ (or $x = \dots$)		
	AI	a = 4.73 (or $x = 4.75$) cao		
	Note	Give M0A0M0A0 for $F(a) - (1 - F(3)) = 0.642 \{ \Rightarrow F(a) = 1.392 \}$		
	Note	Give M0A0M0A0 for $\int_{3}^{a} \left(\frac{1}{10}x\right) dx = 0.642$ (this solves to give awrt 4.67)		
(c)	M1	At least one of either		
		$\frac{1}{20}(x^2 - 4) \rightarrow \pm \alpha x \pm \beta, \ \alpha \neq 0, \ \beta \text{ can be } 0$		
		$\frac{1}{5}(2x-5) \to \pm\delta, \ \delta \neq 0$		
	1 st A1	At least one of $\frac{1}{10}x$ or $\frac{2}{5}$. Can be simplified or un-simplified.		
	2 nd A1	Both $\frac{1}{10}x$ and $\frac{2}{5}$. Can be simplified or un-simplified.		
	dB1ft	dependent on the FIRST method mark being awarded.		
		All three lines with limits correctly followed through from their $F'(x)$		
	Note	Condone the use of $<$ rather than \leq or vice versa.		
	Note Note	U, otherwise is equivalent to $U, x \le 2$ and $U, x \ge 5$ In part (c) accept f being expressed consistently in another variable eq. u		
	THOLE	In part (c), accept 1 being expressed consistently in another variable e.g u		

Question Number	Scheme				
2. (a)	$X \sim \operatorname{Po}(8)$				
	$\{P(X \neq 8)\} = 1 - P(X = 8)$ $1 - P(X = 8)$, can be implied	M1			
	$= 0.860413 \text{ or } 0.8605 \qquad 0.86 \text{ or awrt } 0.860 \text{ or awrt } 0.861$	A1 [2]			
(b)	$X \sim \text{Po}(8)$				
	$\{P(X \ge 8)\} = 1 - 0.453$ 1-0.453 or awrt 0.547	B1			
	$\left\{ \left[P(X \ge 8) \right]^4 \right\} = (1 - 0.453)^4 \left\{ = (0.547)^4 \right\} $ Applying $\left[\text{ their } P(X \ge 8) \right]^4$	M1			
	= 0.089526 0.09 or awrt 0.090	A1			
(c)	V = number of chocolate chins in the Q biscuits	[3]			
(0)	(Y = 100000000000000000000000000000000000	M1			
	$\{Y \sim \text{PO}(72) \approx \} Y \sim \text{N}(72, 72)$ (72, 72)	A1			
	$\{P(Y > 75)\} \approx P(Y > 75.5)$ For either 74.5 or 75.5	M1			
	$= P\left(Z > \frac{75.5 - 72}{\sqrt{72}}\right)$ Standardising (±) with their mean, their standard deviation and either	M1			
	-P(7 > 0.41) - 1 - 0.6591				
	= 0.3409 (from calculator 0.339994) awrt 0.341 or awrt 0.340	Δ1			
		[5]			
(d)	$H_0: \lambda = 1.5, H_1: \lambda > 1.5 \text{ or } H_0: \lambda = 6, H_1: \lambda > 6$ Both hypotheses are stated correctly	B1			
	{Under H_0 , for 4 hours} $X \sim Po(6)$				
	Probability Method P(K > 11) = 1 $P(K < 10)$ $P(K < 0) = 0.01(1 - P(K > 10) - 0.0920)$				
	$P(X \ge 11) = 1 - P(X \le 10) \qquad P(X \le 9) = 0.9161 \text{ or } P(X \ge 10) = 0.0839$ = 1, 0.0574 $P(X \le 10) = 0.0574 \text{ or } P(X \ge 11) = 0.0426$	N / 1			
	Note: Award 1 st M1 for the use of $X \sim Po(6)$	IVI I			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	$P(X \ge 11) = 0.0426 \qquad CR: X \ge 11 \qquad CR: X \ge 11 \text{ or } CR: X > 10$	A1			
	Reject H_0 or significant or 11 lies in the CR dependent on previous M See notes	dM1			
	 Conclude either The <u>rate of sales</u> of packets of biscuits has <u>increased</u>. The <u>mean</u> number of packets of biscuits <u>sold</u> has increased. 				
		[5]			
		15			

	Question 2 Notes						
2. (a)	M1	$1 - P(X = 8)$ or $P(X < 8) + P(X > 8)$ or $P(X \le 7) + P(X \ge 9)$					
	Note	Can be implied by either $1 - \frac{e^{-8}8^8}{8!}$ or $1 - \left(P(X \le 8) - P(X \le 7)\right)$					
		or $1 - (0.5925 - 0.4530)$ or $1 - 0.1395$ or $P(X \le 7) + 1 - P(X \le 8)$					
	A1	0.86 or awrt 0.860 or awrt 0.861					
(b)	B1	1-0.453 or awrt 0.547 (Note: calculator gives 0.5470391905)					
	M1	Applying $\left[\text{their P}(X \ge 8) \right]^4$					
	A1	0.09 or awrt 0.090 (Note: calculator gives 0.08955168526)					
(c)	1 st M1	For writing N or for using a normal approximation.					
	1 st A1	For a correct mean of 72 and a correct variance of 72					
	Note	1 st M1 and/or 1 st A1 may be implied in applying the standardisation formula					
	2 ^{na} M1	For either 74.5 or 75.5 (i.e. an attempt at a continuity correction)					
	3 rd M1	Standardising (\pm) with their mean, their standard deviation and either 75.5 or 75 or 74.5					
	Note	Award 2 nd M1 3 rd M0 for $\frac{75.5 - 72}{72}$ from a correct <i>Y</i> ~ N(72, 72)					
	Note	You can recover the 1 st A1 in part (c) for N(72, $\sqrt{72}$) $\Rightarrow z = \frac{75.5 - 72}{\sqrt{72}}$					
	2 nd A1	awrt 0.341 or awrt 0.340. (Note: calculator gives 0.339994)					
(d)	B1	$H_0: \lambda = 1.5, H_1: \lambda > 1.5$ correctly labelled or $H_0: \lambda = 6, H_1: \lambda > 6.$					
	Note	Allow μ used instead of λ					
	Note	B0 for either $H_0 = 6$, $H_1 > 6$ or $H_0 : x = 6$, $H_1 : x > 6$ or $H_0 : p = 6$, $H_1 : p > 6$					
	1 st M1	For use of $X \sim Po(6)$ (may be implied by 0.9161, 0.9574, 0.9799, 0.0839, 0.0426 or					
		0.0201). Condone by $\frac{e^{-6}(6)^{11}}{11!}$. Allow any value off the Po(6) tables.					
	1 st A1	For either $P(X \ge 11) = 0.0426$ or $CR : X \ge 11$ or $CR : X > 10$ Condone $CR \ge 11$					
	Note	Award 1 st M1 1 st A1 for writing down CR : $X \ge 11$ or CR : $X > 10$ from no working.					
	Note	Give A0 stating CR : $P(X \ge 11)$					
	2 nd dM1	dependent on the FIRST method mark being awarded.					
		For a correct follow through comparison based on their probability or CR and their					
		significance level compatible with their <i>stated</i> alternative hypothesis.					
		Do not allow non-contextual conflicting statements. Eg. "significant" and "accept H_0 ".					
	Note	M1 can be implied by a correct contextual statement.					
	Note	Give final M0A0 for $P(X = 11) = 0.9799 - 0.9574 = 0.0225 \implies \text{Reject H}_0$, etc.					
	Note	Give final M0A0 for $P(X \le 11) = 0.9799 \Rightarrow Accept H_0$, etc					
	2 nd A1	Award for a correct solution only with all previous marks in part (d) being scored.					
		Correct conclusion which is in context, using either the words					
		rate of sales and increased or mean sold and increased					

Question Number	Scheme			
3. (a)	${\mathbf{f}(x)}$ A horizontal line drawn above the <i>x</i> -axis in the first quadrant	B1		
	$\frac{1}{c}$ dependent on the first B mark $\{O\}$ c $2c$ $\{x\}$ $\{O\}$ c $2c$ $\{x\}$ marked on the graph. Ignore $\{O\}, \{x\}$ and $\{f(x)\}$	dB1		
		[2]		
(b)	$E(X) = \frac{3c}{2}$ $E(X) = \frac{3c}{2}$, simplified or un-simplified.	B1		
	$\left\{ E(X^2) = \right\} \int_{c}^{2c} \left(\frac{1}{2c-c} x^2 \right) \left\{ dx \right\} \qquad \qquad \int_{c}^{2c} x^2 f(x) \left\{ dx \right\} \text{ where } f(x) \text{ is } equivalent to } \frac{1}{c}. \text{ (Limits are required)}$	M1		
	$= \left[\frac{1}{c}\left(\frac{x^3}{3}\right)\right]_{\{c\}}^{\{2c\}} \qquad \qquad \pm Ag(c)x^2 \to \pm Bg(c)x^3, \ A \neq 0, \ B \neq 0 $ (Ignore limits for this mark)	M1		
	$= \left(\frac{(2c)^3}{3c} - \frac{c^3}{3c}\right) \left\{= \frac{7c^2}{3}\right\}$ dependent on first M mark. Applies limits of 2c and c to an <i>integrated</i> function in x and subtracts the correct way round.	dM1		
	$Var(X) = E(X^2) - (E(X))^2$			
	$= \frac{7c^2}{3} - \left(\frac{3c}{2}\right)^2$ dependent on first M mark. Applying the variance formula correctly with their E(X)	dM1		
	$=\frac{c^2}{12}*$ Correct proof	A1		
		[6]		
(c)	X > 2(2c - X) Correct un-simplified (or simplified) inequality statement. Can be implied by $X > \frac{4c}{3}$	M1		
	$\Rightarrow X > 4c - 2X \Rightarrow 3X > 4c$			
	$\Rightarrow X > \frac{4c}{3}$ dependent on the first M mark. Rearranges $X > 2(2c - X)$ to give $X >$ or $X <$	dM1		
	$\left\{ P(X > 2(2c - X)) = P\left(X > \frac{4c}{3}\right) \right\} = \frac{2}{3} \qquad \qquad$	A1		
		[3]		
	Note: In (c), give M2 for either $X > \frac{4c}{3}$ or $P\left(X > \frac{4c}{3}\right)$ or $1 - P\left(X < \frac{4c}{3}\right)$	11		

	Question 3 Notes					
3. (a)	1 st B1	A horizontal line drawn above the x-axis in the first quadrant				
	2 nd dB1	dependent on the FIRST B mark being awarded.				
		Labels of c, 2c and $\frac{1}{c}$, marked on the graph.				
	Note	Allow the label $\frac{1}{2c-c}$ as an alternative to $\frac{1}{c}$				
	Note	Ignore $\{O\}$, $\{x\}$ and $\{f(x)\}$				
(b)	B1	$E(X) = \frac{3c}{2}$, simplified or un-simplified. This mark can be implied.				
	Note	B1 can be given for an un-simplified $\left(\frac{(2c)^2}{c}\right) - \left(\frac{c^2}{c}\right)$ or $\frac{3c^2}{2c}$ or $2c - \frac{c}{2}$ etc.				
	Note	$\int_{c}^{2c} \frac{1}{c} x dx \text{ or } \left[\frac{x^2}{2c}\right]_{c}^{2c} \text{ are not sufficient for B1.}$				
	1 st M1	Correct E(X ²) expression of $\int_{c}^{2c} x^{2} f(x) \{ dx \}$ where $f(x)$ is equivalent to $\frac{1}{c}$.				
	Note	Must have limits of $2c$ and c . Note the dx is not required for this mark.				
	2 nd M1	$\pm Ag(c)x^2 \rightarrow \pm Bg(c)x^3, A \neq 0, B \neq 0$, where $g(c)$ is a function of c				
	Note	Limits are not required for the second 2 nd M1 mark.				
	3 rd dM1	dependent on the FIRST method mark being awarded.				
		Applies limits of $2c$ and c to an integrated function in x and subtracts the correct way				
		round.				
	4 th M1	dependent on the FIRST method mark being awarded.				
		Applying the variance formula correctly with their follow through $E(X)$.				
	Note	Allow 4 th M1 for $\left\{ \operatorname{Var}(X) = \right\} \int_{c}^{2c} \left(\frac{1}{2c-c} x^2 \right) \left\{ dx \right\} - \left(\int_{c}^{2c} \left(\frac{1}{2c-c} x \right) \left\{ dx \right\} \right)^2$				
	A1	Correctly proves that $Var(X) = \frac{c^2}{12}$. Note: Answer is given				
(c)	1 st M1	For writing down a correctly un-simplified (or simplified) inequality statement. Eg: $X > 2(2c - X)$ or $P(X > 2(2c - X))$ (Note: "P" is not required for this mark)				
	2 nd dM1	dependent on the FIRST method mark being awarded. Rearranges to give $P(X > \pm \alpha c)$ or $P(X < \pm \alpha c)$ or $X > \pm \alpha c$ or $X < \pm \alpha c$, $\alpha \neq 0$				
	Note	"P" is not required for these cases above				
	Note	Also allow, with P, the statements $1 - P(X \le \alpha c)$ or $1 - P(X \ge \alpha c)$, $\alpha \ne 0$				
	NOTE	Give M2 for either $X > \frac{4c}{3}$ or $P\left(X > \frac{4c}{3}\right)$ or $1 - P\left(X < \frac{4c}{3}\right)$				
	A1	$\frac{2}{3}$ or $\frac{4}{6}$ or $0.\dot{6}$				
	Note	Give M1M1A1 for a final answer of $\frac{2}{3}$ <i>from any</i> working.				

Question Number	Scheme	Marks			
3.	Alternative Method 1 for Part (b)				
(b)	$\left\{ \operatorname{Var}(X) = \right\}$				
	Implied $E(X) = \frac{3c}{2}$	B1			
	$\int_{c}^{2c} x^{2} f(x) \{ dx \} \text{ where } f(x) \text{ is equivalent to } \frac{1}{c}.$ (Limits are required)	1 st M1			
	$\int_{c} \left(2c - c \begin{pmatrix} x & 2 \end{pmatrix} \right)^{c} dx^{2}$ Applies $\int_{c}^{2c} f(x) \left(x - \frac{3c}{2} \right)^{2} \left\{ dx \right\}$ where $f(x)$ is a is equivalent to $\frac{1}{2}$. (Limits are required)) a 4 th dM1) , 2 nd M1 ; a a 4 th dM1 (1) 2 nd M1 (2) (3 rd dM1 (6) (6) (7) (7) (7) (7) (7) (7) (7) (7			
	<i>c</i>				
	$=\frac{1}{c}\left[\frac{1}{3}\left(x-\frac{3c}{2}\right)^{3}\right]_{\{c\}}^{\{2c\}} \qquad \qquad \pm Ag(c)(x-\delta)^{2} \to \pm Bg(c)(x-\delta)^{3}, \\ A, B, \delta \neq 0 \text{ (Ignore limits for this mark)} \end{cases}$	2 nd M1			
	$=\frac{1}{3c}\left(\left(\frac{c}{2}\right)^3 - \left(-\frac{c}{2}\right)^3\right)$ dependent on first M mark. Applies limits of 2c and c to an integrated function in x and subtracts the correct way round.				
	$=\frac{1}{3c}\left(\frac{c^3}{4}\right) = \frac{c^2}{12} *$ Correct proof	A1			
		[6]			
	Alternative Method 2 for Part (b)				
(b)	$\left\{ \operatorname{Var}(X) = \right\}$				
	$\int_{c}^{2c} \left(\frac{1}{2c-c} \left(x - \frac{3}{2}c \right)^{2} \right) \{ dx \}$ Award as in Alt. Method 1				
	$= \frac{1}{c} \int_{c}^{2c} \left(x^2 - 3cx + \frac{9}{4}c^2 \right) \{ dx \}$				
	$= \frac{1}{c} \left[\frac{1}{3} x^3 - \frac{3}{2} c x^2 + \frac{9}{4} c^2 x \right]_{\{c\}}^{\{2c\}} \qquad \qquad \pm Ag(c)(x-\delta)^2 \to \pm Bg(c)(\pm \alpha x^3 \pm \beta x^2 \pm \delta x)^3, \\ A, B, \alpha, \beta, \delta \neq 0 \text{ (Ignore limits for this mark)} $	2 nd M1			
	$=\frac{1}{c}\left(\left(\frac{1}{3}(2c)^3 - \frac{3}{2}c(2c)^2 + \frac{9}{4}c^2(2c)\right) - \left(\frac{1}{3}(c)^3 - \frac{3}{2}c(c)^2 + \frac{9}{4}c^2(c)\right)\right)$ As earlier				
	$=\frac{1}{c}\left(\left(\frac{8}{3}c^{3}-6c^{3}+\frac{9}{2}c^{3}\right)-\left(\frac{1}{3}c^{3}-\frac{3}{2}c^{3}+\frac{9}{4}c^{3}\right)\right)$				
	$=\frac{1}{c}\left(\left(\frac{7}{6}c^3\right) - \left(\frac{13}{12}c^3\right)\right) = \frac{1}{c}\left(\frac{c^3}{12}\right)$				
	$=\frac{c^2}{12}*$ Correct proof	A1			
		[6]			

Question Number		Scheme	Marks				
4. (a)	$P(X = P(X = P(X = P(X = e^{-k} < e^{-k})))$	0 k = 3) = 0.0498 0 k = 4) = 0.0183 0 k = 5) = 0.0067 $0.025 \Rightarrow k > 3.688$	At least one of these 9 probabilites or awrt 3.7 seen in their working.	B1			
	$P(X \leqslant P(X %$	$ \begin{cases} \leq 8 k = 3 \rangle = 0.9962, \ P(X \ge 9 k = 3) = 0.0038 \\ X \le 8 k = 4 \rangle = 0.9786, \ P(X \ge 9 k = 4) = 0.0214 \\ X \le 8 k = 5 \rangle = 0.9319, \ P(X \ge 9 k = 5) = 0.0681 \end{cases} $ Both $P(X = 0) = 0.0183$ or $ a wrt 3.7 \text{ and} \\ either P(X \ge 9) = 0.0214 \\ or P(X \le 8) = 0.9786 \end{cases} $ B					
	Both ta	ils less than 2.5% when $k = 4$	Final answer given as $k = 4$	B1			
(b)	Actual sig. level = $0.0214 + 0.0183$ See notes = 0.0397 0.0397		[3] M1 A1 cao [2]				
		Question 4 No	ntes	5			
4. (a)		Question 4 In	0103				
	1 st B1	For any of 0.0498, 0.0183, 0.0067, 0.9962, 0.9 or awrt 3.7 seen in their working.	, 0.0681				
	2 nd B1	For both $P(X = 0) = 0.0183$ or awrt 3.7 and either $P(X \ge 9) = 0.0214$ or $P(X \le 8) = 0.9786$					
	Note	These must be written as probability statements.					
	3 rd B1	Final answer given as $\underline{k} = 4$. Also allow $\lambda =$	= 4	<u>-</u>			
	Note	Do not recover working for part (a) in part	(b)				
(b)	<u>M1</u>	For the addition of two probabilities for two ta	ails, where each tail < 0.05	<u>-</u>			
	AI	0.0397 cao					

Question Number	Scheme					Marks	
5	$X = 2X_1 + X_2$	where	x	6	9		
5.	$I = \frac{1}{3}$	I I	P(X = x)	0.35	0.65		
	Note: Y	ou can ma	rk parts (a)) and (b) to	ogether for	this question.	
(a)	$\frac{2(6)+6}{3} = 6$	$\frac{2(9)}{3}$	$\frac{+9}{}=9$		At least thre	ee correct values for y of either 6, 7, 8 or 9	B1
	$\frac{2(6)+9}{3} = 7$	$\frac{2(9)}{3}$	$\frac{+6}{-}=8$	Correc	t values for	<i>y</i> of 6, 7 8 and 9 only	B1
							[2]
(b)	$\begin{cases} (6, 6) \Rightarrow P(Y = \\ \{(6, 9) \Rightarrow P(Y = \\ \end{cases}) \end{cases}$	(6) = (0.3) (7) = (0.6)	5) ² (5)(0.35)	(0.6	At least 55)(0.35), (0	one of either $(0.35)^2$, 0.35)(0.65) or $(0.65)^2$	M1
	$\begin{cases} (9, 6) \implies P(Y =$	$(0.3)^{2} = (0.3)^{2}$	5)(0.65)		At least	two of either $(0.35)^2$	
	$\{(9,9) \Rightarrow P(Y=9)\} = (0.65)^2 \qquad (0.65)(0.03) \qquad \text{At least two of either } (0.53), \\ (0.65)(0.35), (0.35)(0.65) \text{ or } (0.65)^2 \$					M1	
					(22)	т	
	sample	(6, 6)	(6,9)	(9, 6)	(9,9)	See notes	A1
	$\frac{y}{P(Y=y)}$	0.1225	0.2275	0.2275	0.4225	At least 3 correct	A1
	or $P(Y = y)$	49	91	91	169	See notes	D 1 ft
		400	400	400	400	See notes	DIII
						150	[5]
(c)	$\left\{ \mathrm{E}(Y) \right\} = 6(0.12)$	25) + 7(0.2	(2275) + 8(0)	.2275) + 9(0.4225) = 7	7.95 or $\frac{159}{20}$	M1;A1 cao
							[2] 9
(c)	Alternative Method for Part (c)						
	$\begin{cases} E(Y) = \frac{2}{3}E(X_1) \end{cases}$	$+\frac{1}{3}\mathrm{E}(X_{2})$	$=\frac{2}{3}\mathrm{E}(X)$	$+\frac{1}{3}\mathbf{E}(X)$	$= \mathrm{E}(X)$		
	= 6(0.35) +9(0.65)	; = 7.95 or	$\frac{159}{20}$			M1; A1 cao
							[2]

		Question 5 Notes				
5. (a)	Note	You can mark parts (a) and (b) together for this question.				
	1 st B1	At least three correct values for y of either 6, 7, 8 or 9				
	2 nd B1	Correct values for y of 6, 7 8 and 9 only. Note: Any extra value(s) given is 2 nd B0.				
(b)	1 st M1	At least one of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.				
	2 nd M1	At least two of either $(0.35)^2$, $(0.65)(0.35)$, $(0.35)(0.65)$ or $(0.65)^2$. Can be implied.				
	1 st A1	At least two correct probabilities given which either must be linked				
		to a correct sample (x_1, x_2) or their followed through y-value.				
	2 nd A1	At least 3 correct probabilities corresponding to the correct value of y.				
	B1ft	Either				
	• all 4 correct probabilities corresponding to the correct value of y					
• 6, 7, 8 and 9 with two correct probabilities, two other probabilities						
	and $\sum p(y) = 1$					
	Note	B1ft is dependent on 1^{st} M1 2^{nd} M1 1^{st} A1.				
	Note	A table is not required but y-values must be linked with their probabilities for 2 nd A1 B1				
	Note	Eg: $(6, 6)$ by itself does not count as an acceptable value of y				
(c)	M1	A correct follow through expression for $E(Y)$ using their distribution				
	Note	Also allow M1 for a correct expression for $E(X)$				
	A1	7.95 cao Allow $\frac{159}{20}$				

Question Number	Scheme		
6. (a)	$X \sim B(30, 0.4)$ $X \sim B(30, 0.4)$	B1	
(b)	Eg: Any one of eitherAny one of these• Constant probability of buying insurancetwo assumptions in context which• Customers buy insuranceindependently of each other	[1] B1	
(c)	$P(X < r) < 0.05$ $\{P(X < 8) - P(X < 9)\} = 0.0940$	[1]	
	$ \{P(X \le 7) = P(X < 8)\} = 0.0435 $ For at least one of either 0.094(0) or $\{P(X \le 7) = P(X < 8)\} = 0.0435 $ Seen in part (c)	M1	
	So $r = 8$ $r = 8$	A1	
(d)	$\{Y \sim B(100, 0.4) \approx\} Y \sim N(40, 24)$ Normal or N (40, 24)	M1	
	$\{P(Y \ge t)\} \approx P(Y > t - 0.5)$ For either $t - 0.5$ or $t + 0.5$	M1	
	$\left\{ = P\left(Z > \frac{(t-0.5)-40}{\sqrt{24}}\right) = 0.938 \right\}$		
	Standardising (\pm) with their mean and their		
	$\frac{(t-0.5)-40}{\sqrt{24}} = -1.54$ standard deviation and either t-0.5 or t or $t+0.5$ or $t-1.5$	M1	
	-1.54 or 1.54 or $awrt - 1.54$ or $awrt 1.54$	B1	
	So, $\{So, t = 32.955571\} \Rightarrow t = 33$ $t = 33$	A1 cao	
		[6]	
(e)	$H_0: p = 0.4, H_1: p < 0.4$ Both hypotheses are stated correctly	B1	
	$\{ \text{Under H}_{0}, X \sim B(25, 0.4) \}$ Probability Method Critical Region Method		
	$P(X \le 6);= 0.0736$ $P(X \le 6)$	M1	
	$P(X \le 6);= 0.0736 \qquad \{P(X \le 7) = 0.1536\} \qquad \text{Either } 0.0736 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 6 \text{ or } CP + V \le 7.766 \text{ or} \\ CP + V \le 7.766 o$	A1	
	$CR: X \leq 6 \qquad CR: X \leq 0 \text{ of } CR: X < 7$		
	{0.0736 < 0.10}		
	Reject H ₀ or significant or 6 lies in the CR Dependent on 1 st M1 See notes	dM1	
	So percentage (or proportion) who buy <u>insurance</u> has <u>decreased</u> .	A1 cso	
		15	

Question	Scheme Ma							
6 (e)	Alternative Method: Normal approximation to the Rinomial Distribution							
0. (c)	Normal Approximation gives 0.0764 (or 0.07652) and loses all A marks							
	$H_0: p = 0.4, H_1: p < 0.4$ Both hypotheses are stated correctly I							
	$\{Y \sim B(25, 0.4) \approx Y \sim N(10, 6)\}$							
	$P(X \leq 6)$	$P(X \le 6) \approx P(X < 6.5)$ $P(X \le 6) \text{ or } P(X < 6.5)$						
		$- p\left(z < 6.5 - 10\right)$						
		$-\Gamma\left(2 < \frac{1}{\sqrt{6}}\right)$						
		= P(Z < -1.4288)						
		$\{=1-0.9236\}=0.0764$ Award A0 here	A0					
	{0	0.0764 < 0.10						
	Reject	H_0 or significant As in the main scheme	M1					
	So percer	ntage (or proportion) who buy insurance has decreased. Award A0 here	A0					
		Question 6 Notes						
6. (a)	B1	$X \sim B(30, 0.4)$ or $X \sim Bin(30, 0.4)$. Condone $X \sim b(30, 0.4)$						
	Note	$X \sim B(30, 0.4)$ o.e. must be seen in part (a) only.						
(b)	B1	For any one of the two acceptable assumptions listed anywhere in part	(b).					
	Note	A contextual statement, which refers to insurance, is required for this n	nark.					
(c)	Note	Award M1 A1 for $r = 8$ seen from no incorrect working.						
(d)	1 st M1	For writing N or for using a normal approximation.						
	1 st A1	For a correct mean of 40 and a correct variance of 24						
	Note	Note 1 st M1 and/or 1 st A1 may be implied in applying the standardisation formula						
	2nd M1 For either $t - 0.5$ or $t + 0.5$ (i.e. an attempt at a continuity correction)							
	3rd M1 As described on the mark scheme.							
	B1 -1.54 or 1.54 or awrt -1.54 or awrt 1.54. Note: Calculator gives -1.5382							
	2nd A1 $t = 33$ cao (The integer value is required).							
(e)	B1	$H_0: p = 0.4, H_1: p < 0.4$ corectly labelled. Also allow $H_0: \pi = 0.4, H_1: \pi$	< 0.4					
		Also allow $H_0: \pi = 0.4$, $H_1: \pi < 0.4$ or $H_0: p(x) = 0.4$, $H_1: p(x) < 0.4$						
	Note B0 for $H_0 = 0.4$, $H_1 < 0.4$							
	1st M1 Probability Method & CR Method: Stating $P(X \le 6)$							
	1 st A1 Either 0.0736 or CR : $X \le 6$ or CR : $X < 7$ Note: Condone CR ≤ 6							
	Note Award 1 st M1 1 st A1 for writing down CR : $X \le 6$ or CR : $X < 7$ from no working.							
	Note Give A0 for stating $CR : P(X \le 6)$							
	2 nd dM1 dependent on the FIRST method mark being awarded.							
		For a correct follow through comparison based on their probability or CR and	their					
	significance level compatible with their <i>stated</i> alternative hypothesis.							
	Do not allow non-contextual conflicting statements. Eg. "significant" and "accept H ₀ ".							
	Note	M1 can be implied by a correct contextual statement.	0					
	2 nd A1	Award for a correct solution only with all previous marks in part (e) being sco	ored.					
		Correct conclusion which is in context, using the words percentage (or propor	<u>tion</u>),					
	insurance and decreased (or equivalent words for decreased).							

Question Number	Scheme	Marks
7. (a)	$\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_{5}^{k} \frac{1}{5} (5-x) \left\{ dx \right\} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting the result equal to 1	M1
	$\begin{bmatrix} x^2 \rceil^{\{k\}} & \begin{bmatrix} x^2 \rceil^{\{5\}} & \\ \end{bmatrix}$ Evidence of $x^n \to x^{n+1}$	M1
	$\left\lfloor \frac{x}{15} \right\rfloor_{\{0\}} + \left\lfloor x - \frac{x}{10} \right\rfloor_{\{k\}} = 1$ Both $\frac{2x}{15} \rightarrow \frac{x^2}{15}$ and $\frac{1}{5}(5-x) \rightarrow x - \frac{x^2}{10}$	A1 o.e.
	$\left(\frac{k^2}{15}\right) + \left(5 - \frac{5^2}{10} - \left(k - \frac{k^2}{10}\right)\right) = 1$	
	$2k^2 + 150 - 75 - 30k + 3k^2 = 30$	
	$k^{2} - 6k + 9 = 0$ or $\frac{k^{2}}{6} - k + \frac{3}{2} = 0$	
	Dependent on the 1 st M mark	
	$(k-3)(k-3) = 0 \implies k =$ Attempt to solve a 3 term quadratic equation leading to $k =$	dM1
	k = 3	A1
(b)	(mode -) 2 $(mode -)$ 2 $(mo$	[5]
(0)	Thiode = 7.5 Sof states then k value from part (a)	[1]
	$\begin{bmatrix} P(x < k > y < k) \end{bmatrix}$	
(c)	$\left\{ P\left(X \leq \frac{k}{2} \middle X \leq k\right) = \frac{\Gamma\left(X \leq \frac{k}{2} \cap X \leq k\right)}{P(X \leq k)} \right\}$	
	$= \frac{P\left(X \leqslant \frac{k}{2}\right)}{P\left(X \leqslant k\right)}$ Either $\frac{P\left(X \leqslant \frac{k}{2}\right)}{P\left(X \leqslant k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F(k)}$ seen or implied.	M1
	$= \frac{\int_{0}^{\frac{k}{2}} \left(\frac{2x}{15}\right) \{dx\}}{\int_{0}^{k} \left(\frac{2x}{15}\right) \{dx\}}$ see notes	dM1
	$= \frac{\frac{1}{15}\left(\frac{k}{2}\right)^2}{\frac{k^2}{15}}$ Correct substitution of their limits or their k into conditional probability formula.	A1ft
	$\left\{ = \frac{\left(\frac{9}{60}\right)}{\left(\frac{9}{15}\right)} = \frac{0.15}{0.6} \right\} = \frac{1}{4} \qquad \qquad \frac{1}{4} \text{ or } 0.25$	A1 cao
		[4]
		10

	Question 7 Notes				
7. (a)	1 st M1	$\int_{0}^{k} \left(\frac{2x}{15}\right) \left\{ dx \right\} + \int_{5}^{k} \frac{1}{5} (5-x) \left\{ dx \right\} = 1. (with \ correct \ limits \ and = 1) \left\{ dx \right\} \text{ not needed.}$			
	2 nd M1	Evidence of $x^n \to x^{n+1}$			
	1 st A1	Both $\frac{2x}{15} \to \frac{x^2}{15}$ and $\frac{1}{5}(5-x) \to x - \frac{x^2}{10}$			
	3 rd dM1	dependent on the FIRST method mark being awarded.			
		Attempt to solve a three term quadratic equation. Please see table on page 20			
	2 nd A1	k = 3 from correct working.			
	Note	WARNING: $\frac{2x}{15} = \frac{1}{5}(5-x)$ to get $k = 3$ is M0M0A0M0A0.			
	Note	It is possible to give M0M1A1M0A0 in part (a).			
(b)	B1 ft	Mode = 3 or candidate states their k value from part (a). where $0 < \text{their } k < 5$			
(c)	1 st M1	Either $\frac{P\left(X \leq \frac{k}{2}\right)}{P\left(X \leq k\right)}$ or $\frac{F\left(\frac{k}{2}\right)}{F(k)}$, seen or implied by their later working.			
	Note	Without reference to a correct conditional probability statement give 1 st M0 for either			
		$\frac{f\left(\frac{k}{2}\right)}{f(k)} \text{ or } \frac{F\left(k\right) - F\left(\frac{k}{2}\right)}{F\left(k\right)} \text{ or } \frac{P\left(X \leqslant \frac{k}{2}\right) \times P\left(X \leqslant k\right)}{P\left(X \leqslant k\right)}$			
	$2^{na} dM1$	11 dependent on the FIRST method mark being awarded.			
		Applies the conditional probability statement by writing down • $\frac{\int_{0}^{\frac{k}{2}} \left(\frac{2x}{15}\right) \{dx\}}{\int_{0}^{k} \left(\frac{2x}{15}\right) \{dx\}}$ with limits. • $\frac{F\left(\frac{k}{2}\right)}{F(k)}$ where $F(x)$ is defined as $F(x) = \frac{x^{2}}{15}$ These statements can be implied by later working.			
	Note	Finding $P(X \le 1.5) = 0.15$ and $P(X \le 3) = 0.6$ without applying $\frac{0.15}{0.6}$ is 2^{nd} M0			
	1 st A1ft	Correct substitution of their limits or their k into conditional probability formula.			
	Note	Candidates can work in terms of k for this $1^{st} A1$ mark.			
	2 nd A1	$\frac{1}{4}$ or 0.25 cao			
	Note	Condone giving 2 nd A1 for achieving a correct answer of 0.25 where at least one of their			
		stated $P\left(X \leq \frac{k}{2}\right)$ or $P\left(X \leq k\right)$ is greater than 1			
	Note	Alternative method using similar triangles. Area up to $\frac{k}{2}$ is $\frac{1}{4}$ of the area up to k. This can score 4 marks			
		This can belle + muras.			

7. (a)	Alternative Method 1 for Part (a) Using the CDF			
	$0 \leq x \leq k, \ \mathbf{F}(x) = \int_{0}^{k} \frac{2t}{15} \{ dt \} = \left[\frac{2t^2}{\underline{30}} \right]_{0}^{x} = \frac{x^2}{\underline{15}} $ Evidence of $x^n \to x^{n+1}$	2 nd M1		
	$k < x \le 5, \ F(x) = F(k) + \int_{k}^{x} \frac{1}{5} (5-t) \{dt\}$ Both $\frac{2x}{15} \to \frac{x^{2}}{\underline{15}}$ and			
	$=\frac{k^2}{15} + \left[\frac{1}{5}\left(5t - \frac{t^2}{2}\right)\right]_k^r \qquad \qquad$	o.e.		
	$=\frac{k^{2}}{15} + \frac{1}{5}\left(\frac{5x - \frac{x^{2}}{2}}{2}\right) - \frac{1}{5}\left(5k - \frac{k^{2}}{2}\right)$			
	$=x-\frac{x^2}{10}-k+\frac{k^2}{6}$			
	$\{F(5) = 1 \Longrightarrow\} 5 - \frac{5^2}{10} - k + \frac{k^2}{6} = 1$ Complete method of writing a correct equation for the area <i>with correct limits</i> and setting F(5) = 1	1 st M1		
	then apply the main scheme			
7. (a)	Alternative Method 2 for Part (a) Use of Area			
	1 (2k) = 1(5-k)(5-k) = 1 Complete area expression put = 1	<u>M1</u>		
	$\left[\frac{2}{2}^{k}\left(\frac{15}{15}\right)^{+}\frac{2}{2}\left(\frac{-5}{5}\right)^{(5-k)=1}\right]$ At least one term correct on LHS	MI Al oe		
	then apply the main scheme	711 0.0.		
General	Note The c.d.f is defined as			
	$F(x) = \begin{cases} 0, \ x < 0 \\ \frac{x^2}{15}, \ 0 \le x \le 3 \\ x - \frac{x^2}{10} - \frac{3}{2}, \ 3 < x \le 5 \\ 1, \ x > 5 \end{cases}$			
7. (a)	<u>Method mark for solving a 3 term quadratic of the form</u> $x^2 + bx + c = 0$			
	Factorising/Solving a quadratic equation is tested in Question 7(a).			
	1. Factorisation $(r^2 + hr + c) = (r + h)(r + a)$ where $ na = c $ leading to $r =$			
	$(x + bx + c) = (x + p)(x + q), \text{ where } pq = c , \text{ leading to } x =$ $(a x^{2} + bx + c) = (m x \pm p)(n x \pm q), \text{ where } pq = c \text{ and } mn = a , \text{ leading to } x =$			
	2. Formula Attempt to use correct formula (with values for <i>a</i> , <i>b</i> and <i>c</i>)			
	3. Completing the square			
	Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x =$			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom